
Running head: COGNITIVE ARCHITECTURES AND APPLIED COGNITIVE PSYCHOLOGY

Cognitive Architectures And Their Potential For Applied Cognitive Psychology

Tuuli Pöllänen

Cognitive architectures 1

Typically, papers on cognitive architectures appear to begin with a short account of their

history, and the accounts for the history of cognitive architectures typically approach the theme from

the first computational cognitive models (often the GPS, by Newell and Simon, 1963 – already ten

years before Allen Newell’s paper, 1973, discussed in detail in the following paragraphs), then

forwarding the theme by explaining how newer models were based on the first ones, how they became

more elaborate over time, introducing their applications and domains. Often, Allen Newell’s 1973

paper is mentioned shortly, possibly even as a side note. However, I find that if the audience of the

paper is not well-acquainted with the concept and uses of computational cognitive models (including

cognitive architectures), Newell’s (1973) critical vantage point is a very good start point for

approaching the subject, as it explains what shortcomings of the experimental paradigm the first

computational models attempted to mitigate.

In 1973, Allen Newell was given a task to comment on every paper appearing in W.G. Chase's

(Ed.) symposium on visual information processing. Rather ambitiously, Newell decided to not only

comment on every paper, but also to attempt to draw a conclusion that would give a holistic picture of

visual processing – a decision he claims he soon regretted (Newell, 1973). After realizing the

impossibility of the task, Newell (1973) titled his paper (which is now considered a well-read classic

and which is quite an entertaining read – highly recommended) »You can’t play twenty questions with

nature and win«, and dove into the problems of cognitive psychology of his time (and largely what is

still one of the key issues in cognitive psychology as well as AI in the more recent years).

Newell (1973) expressed his despair over how nearly all experimentalists of his time were

dealing with their own little areas, performing what he thought were absolutely magnificent

experiments and concluding interesting results, but driven by mutually exclusive binary distinctions

(nature or nurture, parallel or serial, central or peripheral) and with very little interest in drawing

together with other studies to create a thorough, holistic picture of human cognition, where processes

could happen simultaneously on multiple systems level on several different ways, influenced and

modified by several different factors. He pointed out that there were a few strands of theory that

throve for some quantitative explanation over a class of phenomena, but they were not common

Cognitive architectures 2

enough to »quiet his concern«. He argued that if something was not to change soon to provide the field

a »path to clarity«, the situation was to get muddier and muddier. His key issue was stated as follows:

»Science advances in playing twenty questions with nature. The proper tactic is to frame a

general question, hopefully binary, that can be attacked experimentally. Having settled that

bits-worth, one can proceed to the next. The policy appears optimal – one never risks much,

there is feedback from nature at every step, and progress is inevitable. Unfortunately, the

questions never seem to be really answered, the strategy does not seem to work.« (Newell,

1973, p. 290).

In his paper, Newell diagnoses the problems he found in an attempt to make a synthesis on the

paper, and writes down two injunctions on how to approach cognitive experimentation:

1. Know the method your subject is using to perform the experimental task. Behavior is

programmable. This means that it is under the control of the subject as means to his own ends.

To predict behavior, you must know his goals, the structure of the task environment, and the

invariant structure of his processing mechanisms. From these, you can predict what methods

are available to the subject.

2. Never average over methods. Uncertainty of which method the subject uses takes substantial

space in discussion of experimental results, but averaging methods leads to either “garbage, or,

even worse: spurious regularity” (Newell, 1973, p. 295).

Newell (1973) argued that the task in psychology is first to discover the structure of the

subject, which is fixed and invariant so that we can theoretically infer the method it would choose for

solving a task (this, I suspect, is also why cognitive architectures prefer to model subject

characteristics that are relatively stable over time, as I will explain later). Then, once we know the

subject’s goal and the task environment, we generate a small collection of methods that are likely to be

used by him in the task, and with careful experimental design or by suitable post hoc analyses, we can

find out what method he selected. He explains that the reason for numerous correctional experiments

in cognitive psychology is likely the fact that subjects opted for new methods to approach the problem

Cognitive architectures 3

– by predicting likely methods beforehand, it would be possible to exit the loop of repeating

correctional experiments. Newell (1973) argued that where experimentalists in cognitive psychology

often did attempt to pick a couple of methods their subject could have used to approach the task, or

portrayed the entire set of processing stages in a flow diagram (a novelty at his time), they often left

open the total method being used, and did not operate within a frame, a control structure, which would

constrain what other methods might also be evoked to perform the same task. This brings us to

computational cognitive models, as Newell argues that the control structures are best illustrated by

programming languages. A rather simplified account of Newell’s explanations is that programmed

algebraic structures work well for making natural constraints (or control structures) in that they create

a space where different methods can be tested if they conform to the limitations of space and time.

In order to remedy the problems he pointed out, Newell (1973) suggested three approaches, or

paradigms, to experimentation:

1. Complete processing models: Newell (1973) suggested that scientists should attempt to

construct complete processing models, rather than partial ones as was the tradition. Newell

also argued that the control processes employed here should be psychologically relevant.

2. Analyzing complex tasks: Focusing on a single complex task instead of designing specific

small experiments to try and settle specific small questions would, and making sure that

experiments employing those complex tasks could be sown together and each contribute its

own detail to a bigger picture.

3. One program for many tasks: A third solution would be to construct a single system to perform

a diverse collection of small experimental tasks. This suggestion contains the concept of both

cognitive architectures, as well as psychometric artificial intelligence, as Newell proposes that

an alternative mold would be to construct a single program that could take a standard

intelligence test.

Although computational cognitive models were certainly already around before Newell’s

critique of cognitive psychological experiments in 1973, I believe Newell’s contribution helped raise

Cognitive architectures 4

them more towards the main streams of cognitive research, where in the sixties, computational

cognitive models were the subject of only a handful of scientists (including Newell himself, rather

unsurprisingly). Langley, Laird, Rogers and Sun (2008) refer to Newell’s (1973) text as a “call to

arms”, which elicited a response in the scientific community and triggered new lines of research and

modeling, mainly the specific class of architectures called product systems. Over the past decades, a

variety of other architectural classes has emerged, some less concerned with human behavior than

others. In the nineties, the movement transferred beyond basic research into the commercial sector

with applications such as creating believable agents for simulated training environments, computer

tutoring systems and interactive computer games (Langley et al., 2008).

Cognitive models and cognitive architectures

Cognitive models are simply models of human cognition, typically presented in the form of a

more or less automatic cognition-simulating computer model. This allows us to inspect the behavior of

the agent of the model, to predict it and its outcomes, observe the path of its unfolding. Cognitive

models provide means for applying knowledge gathered by psychology along the years to a range of

different domains, such as designing instruction (e.g. Merriboer, Paas & Sweller, 1998), designing and

simulating functional behavior in non-human intelligent agents (e.g. the ADAPT-architecture for

robotics; Benjamin, Lonsdale & Lyon, 2004), and the design and optimization of user interfaces (e.g.

Ritter & Young, 2001).

Contemporary cognitive models are often created in the form of cognitive architectures, which

differ in some ways from just any cognitive model. Cognitive architectures are much like foundation

blocks to a building, so that part of the content of the created model (or the finalized house in our

analogy) belongs to the outlying architecture, and part of it is supplied by the analyst, who adds to the

generic architecture in order to construct a specific model. All models that are constructed around the

same architecture share features of the architecture, as the architecture provides constraints to the

model. What distinguishes the different models is information that has been added to the architecture

in order to build them (Ritter & Young, 2001).

Cognitive architectures 5

Dutch, Oentaryo and Pasquier (2008) define the concept of a cognitive architecture as a set of

rules, for an intelligent agent, by prescribing computational processes with the intention of modeling a

given cognitive system the architecture is designed for, most often a person or some other entity that

can be considered intelligent under some definition. Although their definition is certainly extensive,

Dutch, Oentaryo and Pasquire (2008) miss the central notion that the key idea of a cognitive

architecture is to simulate human performance, in a human-like way (Byrne, 2001); very different

from the engineering-approach to artificial intelligence, where the intention is to model the process

with »any means necessary« using any available technology that would fit as means to an end. As an

example, Byrne (2001) describes the Deep Blue chess program, which would not qualify as a

cognitive architecture, because its problem solving is not human-like, but rather, based on massive

searches of the entire game space. Byrne describes cognitive architectures as attempts to describe the

overall structure and arrangement of the human cognitive system – a broad theory of human cognition,

based on extensive experimental data transformed into a running computer simulation program. Ritter

and Young (2001) define a cognitive architecture as an embodiment of »a scientific hypothesis about

those aspects of human cognition that are relatively constant over time and relatively independent of

the task«, and Langley, Laird, Rogers and Sun (2008) add that the term »architecture« implies that the

intention is not only to model behavior or performance, but that a key notion is modeling the entire

outlying infrastructure of the system.

Kieras (2007) explains that one of the first intentions of creation of cognitive architectures was

to provide a balance to the so-called box-system that had been popular in cognitive psychology. Such

models attempted to illustrate flow of information and storage mechanisms in different processing

stages. Kieras (2007) argues that the problem with the typical box model was that sensory and motor

organs were rarely included, and if they were, they were not presented in sufficient detail. He goes on

to explain that since most of these models were created in service of different memory paradigms, it

made sense that storage systems were emphasized, but that also limits their use for other applications.

Additionally, the box models did not provide a perfect model even for the memory paradigms, for

which they were created, since the contents of the storage systems were loosely specified in terms of

Cognitive architectures 6

»features«, the processes of information exchange between different storage systems was rarely

elaborated in sufficient detail, and often it was assumed that there was some kind of a vague executive

process or component somehow responsible for overseeing, maintaining and managing function of the

other components (Kieras, 2007). The components and processes in these box models were extracted

from simple probability theory models for each individual box (such as what the probability might be

for an item to be lost over time or information to be successfully transferred from one system to

another (Kieras, 2007). Since each component was subsumed by a different probability model,

interaction between the individual components may not have been modeled sufficiently or at all.

If we compare a more modern cognitive architecture model to one of the simpler box-models,

we notice that they attempt to approach the modeled agent with a more holistic, dynamic approach.

They typically still contain the box-model as an integral part of the architecture, but also – depending

on the intention of the architecture and the modeling agent – other factors and processes, such as

sensory-motor peripherals and separated memory and processing systems (Kieras, 2007). Where the

“executive” component pulls together the box diagram, its use is avoided in a cognitive architecture by

distributing its functions into different, more clearly defined processes between the different

components, and by subsuming the entire architecture under a “cognitive processor”, which in

addition to performing cognition also controls the system as a whole, including itself (Kieras, 2007),

(although in my opinion, one can question whether the cognitive processor and the executive

component in the box systems really are that different from one another, and whether the cognitive

processor could not be considered just a more elaborate notion of the executive).

Cognitive architecture research supports the creation and understanding of synthetic agents

that support the same capabilities as humans; a central goal of artificial intelligence and cognitive

science (Langley et al., 2008). But there is variability between cognitive architectures themselves,

depending on numerous different factors. For example, architectures are created for different

intentions, such as making an as-good-as-possible summary of quantitative data from cognitive

psychology, or by focusing more on functional behavior and focusing on modeling functional behavior

while not following experimental data in such a conscientious manner. Other models focus on detailed

Cognitive architectures 7

accounts of all variables influencing behavior, while others aim at simplicity. Some include

perceptional and motor components, where others only attempt to model memory and learning

(compare e.g. EPIC and and ACT-R). Also the programming language the architecture is written in

creates some variation (Kieras, 2005), as does the agent they attempt to model. For instance, one

architecture may focus on modeling inherent aspects of human cognition, where another may be an

attempt to create an effective path to building intelligent agents or optimizing their performance (such

as the ADAPT architecture for robotics; Benjamin, Lonsdale & Lyons, 2004).

A recent trend has been to add actual extensions to the models built on an architecture (such as

simulated eyes or hands, depending on what is relevant to the task), enabling construction of embodied

models. Embodied models have the benefit of interacting directly with interfaces, allowing direct

evaluation of the interface as well as better predictions and explanations for user behavior (Ritter &

Young, 2001).

Capabilities of cognitive architectures

Not just any cognitive model qualifies as a cognitive architecture. I explained earlier that

cognitive architectures function as blueprints for modeling performance and behavior of some

intelligent agent. A cognitive architecture specifies the underlying infrastructure of an intelligent

system, including aspects that remain relatively constant over time and across different application

domains, including (Langley, Laird, Rogers & Sun, 2008):

a) The short-term and long-term memories that contain the agent's beliefs, goals and knowledge

b) The elements contained in short- and long-term memory and their organization into mental

structures on a larger scale

c) The functional processes operating on these structures, including performance mechanisms

that utilize them, and learning mechanisms that alter them

The memory contents of a cognitive architecture have a certain alterability to them: because

the contents of a modeled' agents memories can change over time, different knowledge bases and

beliefs can be interpreted by the same architecture. Langley et al. (2008) draw an analogy from an

apartment, where there are structural parts that remain the same, such as walls and foundations, and as

Cognitive architectures 8

well as furniture and appliances that can be both moved and replaced. Architectures differ in their

specific assumptions about the alterability and use of memory contents, similarly as to how some

apartment have built-in bookshelves or have appliances fixed to the structures, whereas others have

freely movable furniture.

A few other abilities, such as recognition and decision-making, are a necessary requirement to

support a well-defined architecture, but cognitive architectures frequently employ other functions, too,

depending on their domain and intention of use (Langley, Laird, Rogers & Sun, 2008). A central issue

is how to design the architecture so that the agent can access different sources of knowledge (Langley

et al., 2008). For example, the system needs some kind of a perception function to gain knowledge

about the environment, and planning, reasoning and prediction are required to know the implications

of the current situation. Knowledge from other agents comes through communication, and knowledge

about past situations requires memory and learning (Langley et al., 2008). The more of these abilities

the architecture supports, the more sources of knowledge it can access to guide its behavior.

Another thing to define is whether the architecture should support these abilities directly with

an embedded process, or if it should provide ways to implement them. The decision influences what

the agent can learn from experience, what the designer can select to optimize for their model, and what

specialized mechanisms are available for which functions (Langley et al., 2008).

Next I will go through some of the most common and fundamental capabilities of different

cognitive architectures, abstracted largely from Langley et al. (2008), who provide an excellent

account on the subject.

Recognition and categorization

Recognition serves as a contact between the agent’s environment and its knowledge by

allowing recognition of situations or events as reproductions of familiar patterns. Recognition can be

static (e.g. recognizing letters that make up a word) or dynamic (e.g. recognizing a sequence of

movements). Recognition is closely related to categorization; assigning objects, situations and events

Cognitive architectures 9

to known concepts and categories. Recognition and categorization are tightly linked to perception, as

they operate on output from the perceptual system.

To support recognition and categorization, a cognitive architecture needs to provide a way to

represent patterns and situations in memory (Langley et al., 2008). It also needs some recognition

process that lets it identify when (and to what degree) a particular stimulus matches a stored category.

An architecture should also involve some mechanism for learning new categories from instruction or

experience, and for modifying existing categories when necessary.

Decision making and choice

The system needs the ability to make decisions and discriminate among alternatives to operate

in its environment. Decisions are typically associated with recognition of a situation or a pattern and

then behaving accordingly, which is why cognitive architectures typically combine the two

mechanisms into a recognize-act cycle underlying all cognitive behavior (Langley, Laird, Rogers &

Sun, 2008). Architectures also enable models with more complex decision-making than the recognize-

act cycles performed even on the architectural level, allowing modeling of complex, intelligent

decision-making on different domains.

In order to support decision making, the system needs to provide some way of representing

alternative choices or actions, and then some process for selecting among the alternatives – most

architectures separate this step into two parts, where the system first determines whether a given

choice is allowable (often by comparing it with some pattern and using it only if a match is found),

and then selecting among different allowable alternatives, typically by computing them some

numerical score and choosing one with a preferable score. This is called conflict resolution and it takes

a very different form in different architectures (Langley et al., 2008).

Finally, a good architecture also incorporates some way to learn better decision making

(Langley et al., 2008). This can involve learning new alternatives, but most typically means revising

the conditions under which an existing action is considered allowable or by altering the numeric

functions used to define scores for different action patterns during the conflict resolution.

Cognitive architectures 10

Perception and situation assessment

A cognitive architecture also must provide some way for the modeled agent to sense, perceive

and interpret its environment. Different modalities may be modeled, though the sensors range from

simple devices like a thermometer to more complex mechanisms like stereoscopic vision or sonar

generating a depth map in the area of the visual field. Perception can also integrate the results from

different modalities into a single description of the environmental situation, which the architecture can

represent then utilize by other cognitive processes (Langley, Laird, Rogers & Sun, 2008).

Perception covers many types of processing, from automatically supported simple ones to

ones that require limited resources and need to be consciously invoked (Langley, Laird, Rogers & Sun,

2008). For example, our visual system detects peripheral movements automatically, but the fovea only

extracts details from the small area where it is pointed. Actively directing the fovea to a point of

interest calls for attention, which also needs to be included in a cognitive architecture for it to be able

to direct its limited perceptual resources to detect relevant information in a complex environment

(Langley et al., 2008). An architecture acquires and improves its perceptual knowledge about what

sensors to invoke and where to focus them by learning from previous experiences, thus making it more

efficient in a noisy, dynamic environment.

It’s also not sufficient for a model to perceive isolated objects and events, but it needs to be

programmed to understand and interpret the broader environmental situation. This calls for the agent

to be able to combine perceptual information about many entities and events, from many sources, to

compose a large-scale model of its current surroundings and internal states. This process relies on

recognition and categorization and on inferential mechanisms.

Prediction and monitoring

One intention of cognitive architectures is to make predictions about future situations and

events, based on the time and experiences they have had in an on-line state. Making a prediction

requires some internal model of the environment and of how actions influence it, and a representation

of this in the agent’s memory. One approach involves mapping a description of the original situation

Cognitive architectures 11

and the decided action, to a description of the resulting situation. Another approach is to encode the

effects different actions have in changing the environment. Both cases require some mechanism that

uses knowledge structures to predict future situations, e.g. by recognizing a class of situations where a

certain action will have a certain effect. Ideally an architecture should also be able to learn predictive

models from experience, and to optimize them over time. (Langley, Laird, Rogers & Sun, 2008).

An architecture with a mechanism for making prediction can also use it to monitor the

environment. However, this poses an issue for architectures with limited perceptual resources (such as

the ACT-R), because monitoring relates perception to prediction (Langley et al., 2008).

Problem solving and planning

Cognitive architectures must be able to generate plans and solve problems, because their

modeled agents need to achieve their goals in new situations. Planning is only possible, if the agent

has an environmental model that predicts the outcomes of its actions. Additionally, the architecture

must be able to represent a plan as a sequence of actions, their expected outcomes, and what new

actions their execution will enable. The plan structure can also include conditional actions (“in the

form of “perform x only if y=1”) and different branches that depend on the outcome of earlier events

(“if x leads to z, perform y, otherwise perform c”).

Planning can take advantage of numerous systems embedded in the architecture, such as low-

level motor and sensory actions, but always require some sort of memory, problem solving and search.

The challenge is to perform actions through a sequence of problem states, where at each step the

system needs to consider applicable operators, select one or more, and apply it, leading to a new

problem state. This is then repeated until a plan is found acceptable, or the system gives up. Being able

to predict several sequences ahead makes problem solving easier, but how many steps ahead the

system can think depends on its working memory and overall capacity. Even primitive potential for

machine learning is of great use, since it allows the system to detect planning and problem solving

patterns that have proven useful previously. There are different ways to achieve this. An architecture

can learn from direct instruction, from the results of a problem-space search, by observing another

Cognitive architectures 12

agent’s behavior – also called behavioral cloning (Sammut, 1996, as cited in Laird, Langley, Rogers &

Sun, 2008), or from delayed rewards via reinforcement learning (Sutton & Barto, 1998, as cited in

Laird et al., 2008). There are two ways learning helps problem solving: by reducing the branching

factor of search, either by utilizing heuristic conditions or by refining a numeric evaluation function to

score different options, in order to guide the agent’s choice. The system can also store plans which

makes a search faster since it allows it to take larger steps in the problem space, essentially skipping

multiple problem stages.

Sometimes it is necessary to modify an existing plan in response to unexpected changes in the

environment, for example, when a situational variable changes so that the action plan is no longer

applicable, or when a new situation brings some more beneficial way of performing the action

sequence. Changing action in this case is possible only for a system capable of monitoring its own

performance.

Reasoning and belief maintenance

Reasoning is the process of drawing mental conclusions from other beliefs or assumptions that

are known to hold (Langley, Laird, Rogers & Sun, 2008). In order to support such a process, an

architecture must be able to represent relationships among beliefs. Typically these relationships are

coded in first-order logic, but other systems have been applied, such as neural networks, production

rules and Bayesian networks (Langley et al., 2008). Reasoning can also be heuristic or approximate,

not necessarily logical, and still prove useful for an intelligent agent – this is also sometimes closer to

the reality of human reasoning and in some cases may thus even be preferable to other types of

inferences. Deductive reasoning is often used as a mechanism to draw inferences using knowledge

structures. Inductive reasoning is also a possibility, as is abductive inference. Selecting which method

of inference to apply happens similarly as plan making or problem solving, in a sequence of evaluative

steps.

Cognitive architectures infer new beliefs as well as decide whether to maintain old ones.

Certain beliefs depend on others, and the agent needs to track the latter to determine whether it should

Cognitive architectures 13

continue to believe in the former, abandon it, or alter its confidence. This process is called belief

maintenance, and it is especially important in dynamic environments with unexpected changes. It also

necessitates a dependency structure that connects beliefs in the system’s memory.

Execution and action

Since cognition occurs to support and drive activity in the environment, a cognitive

architecture must be able to represent and store motor skills enabling such activities. These can range

from primitive, or component actions, to complex multi-step procedures (the latter is related to

planning action sequences), however, a high-quality architecture should support anything from fully

reactive and simple reactions to automatized, open-loop behaviors, as the capability of performing

both is an inherent characteristic of nearly any intelligent system.

Actions and their sequences should also be learnable, by behavioral cloning, reactive learning

or successfully achieving goals. Knowledge for action selection as well as skill complexity are also

learnable in an optimal cognitive architecture.

Interaction and communication

Agents exist in environments in interaction with other agents, and communication allows one

agent to obtain knowledge from another. The modality in which communication occurs can vary, but

any communication allows for conveying any of the cognitive activities discussed so far (categories,

decision making, perception, actions, predictions, plans, inferences, problem solving…) An

architecture should support a mechanism for transforming this knowledge into a communicative form,

the most common being spoken or written language, but in any case, in some natural or artificial

language understood by both entities despite of different mental structures. Translating into an external

format requires planning and execution, whereas language comprehension requires inference and

reasoning. Conversational dialogues pose a specific challenge by requiring both generation and

understanding of natural language, as well as coordination with the other agent in the form of turn

taking.

Cognitive architectures 14

Remembering, reflection and learning

These are so-called meta-management mechanisms (Sloman, 2001, as cited in Langley, Laird,

Rogers & Sun, 2008), not strictly required for an intelligent agent, but their inclusion significantly

increases flexibility and robustness.

Remembering is the ability to encode and store results of cognitive processing in the system’s

memory, for retrieval or access later on. To remember a cognitive activity, the architecture stores the

cognitive structures created during that activity, indices them in its memory and retrieves them when

needed. The resulting content is referred to as episodic memories (Langley et al., 2008). Reflection is

the processing of either recently activated mental structures or older structures retrieved from the

episodic memory. Explanation of an agent’s cognitive actions (such as inferences, plans, decisions) is

one type of reflective activity, another one is meta-reasoning about other cognitive activities – a

process where the agent explains the generation of its cognitive activities (e.g. its process of making

inferences). Reflective processes leave their own traces and so may themselves be subject to

reflection.

The final meta-management mechanism is related to learning, which is typically an automated

function in nearly any given cognitive architecture, not subject to the agent’s inspection or conscious

control. With more elaborate learning systems, however, the agent gains the ability to transfer learned

information either between similar tasks, within the same domain, and even to tasks within related but

distinct domains. Data for learning can come from many sources, such as observation, problem-

solving, practice or known skills, but always involves the processing of memory structures with an

intention to improve the agent’s capabilities (Langley, Laird, Rogers & Sun, 2008).

Properties of cognitive architectures

The internal properties of cognitive architectures largely define their capabilities. The

properties can be split to the architecture’s knowledge representation, the organization of its

knowledge, the manner in which knowledge is utilized, and the mechanisms for acquisition and

revision of knowledge. I will discuss these shortly and with an attempt to avoid technicalities.

Cognitive architectures 15

Knowledge representation

Knowledge itself is not built into the architecture, as it can change across domains over time,

and the architecture is there to model characteristics that stay stable over time. However, how the

agent encodes its knowledge constitutes a central aspect of a cognitive architecture (Langley, Laird,

Rogers & Sun, 2008), and different representational choices come with different advantages and

disadvantages. The primary representational question is whether the system should use a single

notation for encoding all its knowledge, or employ a mixture of formalisms. Selecting only one

notation brings elegance and works well for abilities that must operate only on one type of structure

(such as learning or reflection), but focusing on one framework forces the system to an unpractical

approach towards certain problems (Langley et al., 2008). Langley et al. (2008) present distinguishing

declarative and procedural representation as a common tradition, and explain that architectures

typically include some of both. Declarative encodings are such that can be manipulated by cognitive

mechanisms independent of their content, supporting very flexible use, but leading to inefficient

processing. Procedural formalisms encode knowledge about how to complete tasks, are often

represented as production rules, and allow efficient but inflexible application of knowledge.

Some architecture also support meta-knowledge about the agent’s own capabilities. This type

of knowledge supports meta-reasoning, and enables good understanding of the cognitive steps taken

during an agent’s activities and the reasons for them.

Tulving (1972, as cited in Langley et al., 2008) differentiates between semantic and episodic

memory. Most architectures focus on semantic memory, whereas episodic memory appears better for

retrieving specific facts and occurrences. In architectures, both can fundamentally serve the same

purposes, so focusing on one does not necessarily limit the agent’s possibilities (Langley et al., 2008).

Through the time, knowledge representation has happened through different representational

formalisms (Langley et al., 2008). Semantic networks encode both generic and specific knowledge in a

declarative format consisting of nodes (for concepts or entities) and links (relationships between

them). Conceptual spaces (Gärdenfors, 2004) consist of a number of “quality dimensions” often

Cognitive architectures 16

derived from perceptual mechanisms, capable of representing various kinds of information as well as

to describe concept learning. First-order logic encodes knowledge as logical expression in terms of

predicates and arguments, along wih logical statements about the relationships of the expressions such

as conjunction, disjunction, negation and implication. Langley, Laird, Rogers and Sun (2008) also

briefly describe frames and schemas and plans, a structured framework for encoding courses of

action.

Organization of knowledge

Another important question is how the knowledge should be organized in the memory of the

architecture. The first point to consider is whether the knowledge representation scheme should

support hierarchical structures (Langley, Laird, Rogers & Sun, 2008). The decision influences whether

or not task hierarchies will be easily executed by the system, but different types of semi-hierarchical

structures are also possible (Langley et al., 2008). The second point to think about considers the

granularity of the knowledge stored in memory. For example, production systems and first-order logic

constitute fine-grained knowledge, and so an architecture using them for encoding needs an interpreter

to compose them in order to achieve complex behavior. Coarse-grained structures store entire plans

and macro-operators, which puts less burden on the interpreter but leads to less flexibility and

generality of the applied knowledge. Langley et al. (2008) suggest a structured framework, which

describes coarse elements in terms of fine-grained ones, giving access to both.

The final important point about knowledge organization is the number of distinct memories

the architecture supports, and how they are connected to one another. The modeled agent needs to

have some kind of long-term memory (LTM); the contents of the LTM should be relatively stable over

time, but accessible to alteration through instruction and learning. The agent also needs short term

memory (STM) to contain more dynamic and short-lived beliefs and goals. In most production system

architectures, LTM and STM are structurally distinct but related through a process comparing the

conditions of the LTM production rules to the STM structures (Langley et al., 2008). Some

architectures have distinct types of short- and long term memory, e.g. procedural, conceptual and

episodic structures, as they appear in humans.

Cognitive architectures 17

Utilization of knowledge

The knowledge lying in the different memories must of course be utilized for the architecture

to execute any cognitive activities. One question is whether problem solving should rely on heuristic

search through the problem space, or on retrieving solutions or plans from the long-term memory

(Langley et al., 2008). These approaches are not mutually exclusive, but an architecture typically

focuses on one over the other.

Approaches for architectures supporting multi-step problem solving and inference are forward

chaining, backward chaining and means-ends analysis. In forward chaining, the system applies

relevant operators and inference rules to the current problem state and beliefs to produce new states

and beliefs. Backwards chaining generates new sub goals from current goals, progressing from some

goal state towards current states or beliefs. Means-ends analysis combines backwards and forwards

analysis by selecting operators through backward chaining, but executing them whenever their

preconditions are satisfied (Langley et al., 2008). It's important to differentiate between problem-

solving techniques supported by the architecture and ones implemented by knowledge. Different types

of knowledge utilization can occur in architectures that don't inherently contain them, if the conditions

are met.

Another central issue for knowledge utilization concerns the relationship between cognitive

activities and action. Systems can be split to deliberate and reactive, in that deliberate architectures

first plan or reason an action plan and after that begin its execution, whereas reactive architecture

selects its action on each decision cycle based on its comprehension of the current situation.

Deliberation has advantages in predictable environments, whereas reactive faire best in unpredictable

circumstances. There is a similar point between perception and action. A closed-loop control system

senses the environment on each cycle, providing an opportunity to respond to recent changes. And

open-loop system runs a long action sequence over multiple cycles without sensing the environment.

Cognitive architectures 18

Acquisition and refinement of knowledge

Knowledge is acquired from instruction or experience, and both elicitation and execution of

learning behaviors are handled at the architectural level. Some architectures support many such

mechanisms, whereas others rely on a single learning process interacting with knowledge and

experience to achieve different outcomes (Langley, Laird, Rogers & Sun, 2008). Some processes learn

entirely new knowledge structures, whereas others only modify existing functions. Existing structures

can also be revised by adding or removing parts. Another common distinction is to differentiate

analytical and empirical methods – where analytical knowledge acquisition relies on reasoning and is

more exploratory in nature, empirical methods rely on inductive operations, detecting regularities and

using them to transforming experience into usable knowledge of descriptive nature. Architectures can

utilize hybrid methods of incorporating ideas from both frameworks as well as combine them through

different mechanisms.

The fourth issue concerns at what point the acquired knowledge should be incorporated into

the system. Most frameworks are of a so-called eager approach, forming generalized knowledge

structures from experience as soon as it enters memory, whereas those with the lazy approach store

experiences untransformed, then perform implicit generalizations at the time of retrieval (Langley et

al., 2008).

Finally, learning occurs either in an incremental or non-incremental manner. Incremental

learning incorporates training cases one at a time, with limited memory for previous cases, so that the

knowledge base is updated after processing every single experience. Non-incremental methods process

all cases in a single step. This is not as natural as incremental learning, because agents exist over time

and accumulate knowledge gradually, but non-incremental learning avoids the drawback of order of

presentation influencing behavior, as it does for incremental learning utilized by most architectural

systems.

Cognitive architectures 19

The use of cognitive architectures; what are they good for?

Constructing a user model within a cognitive architecture ofers various advantages to the

modeler. The architecture provides a framework to models that can be created on it by posing

constraints. One of the consequences is that the constrained models allow identification of

information, or knowledge, needed in order to perform the task being analyzed, as well as to

differentiate what information is gained from the environment, and what of it is inherent to the

modeled agent. Additionally, since models built around a common architecture share constraints and

assumptions contained in the architecture itself, they can be relatively easily integrated into a coherent,

single model of a broader scope. This allows for the development of libraries of »behavior idioms«

and partial models, which eases the task of constructing new models (Ritter & Young, 2001). For

example, such a library already exists for the ACT-R architecture (Kieras, 2005).

Cognitive architectures contain cognitive mechanisms and resources that are relevant to the

task at hand, allowing the analyst to recognize their meaning in successful performance or error

generation. For example, for interface design such measures can include the working memory load,

the time taken to learn an interface, what gets learned and the causes and types of errors in using it

(Ritter & Young, 2001). They also provide a basis for teaching designers about users. Designers can

refer to the architecture and its behavior for answers to both general and specific questions about users

(Ritter & Young, 2001).

Overall, cognitive architectures provide a very useful tool for contemporary cognitive

psychology. With the interplay of cognitive science, artificial intelligence and cognitive psychology,

they can be considered a nearly inseparable part of the field, working on both the theoretical aspect of

cognitive psychology by helping with the construction of complete models of human cognition, as

with the practical aspect, modeling holistic performance and events within the system of the intelligent

agent, representing an interesting supplement to task optimization efforts using only expert systems.

Considering the birth of computational cognitive models as a remedy to integrate findings

from experimental cognitive psychology with, among others, the intention to increase their usability,

Cognitive architectures 20

and the fact that the entire idea of cognitive architectures is to apply vast quantities of empirical data

from cognitive experiments to artificial intelligent systems with human-like problem-solving methods

and qualities, one could argue that in a way, cognitive architectures are by nature the subject of applied

cognitive psychology. Their applicative nature makes them very useful for some practical intentions.

The uses for cognitive architectures vary greatly by domain of application, but considering the range

of different available architectures and the possibility of always developing new architectures,

essentially only imagination is the limit, assuming that we’re considering an application which would

actually benefit from the use of a computational cognitive model (which, I believe, is not always the

case – a point discussed more in the later section of critique). A few examples of the applications of

different architectures include designing instruction (e.g. Merriboer, Paas & Sweller, 1998), designing

and simulating functional behavior in non-human intelligent agents (e.g. the ADAPT-architecture for

robotics; Benjamin, Lonsdale & Lyon, 2004), and the design and optimization of user interfaces (e.g.

Ritter & Young, 2001). The applications can also be very specific, such as planning automatized pilots

with realistic AI for fighter flight simulators (Jones, Laird, Nielsen, Coulter, Kenny & Koss, 1999).

We will discuss some individual cognitive architectures and their applications in the next

section. Unfortunately going through all possible interesting architectures is absolutely out of the

scope of this seminar, but I will nevertheless attempt to gather a list that would be extensive enough to

cover some of the most prevalent architectures today. At this point, I recommend the reader to note

how some architectures are more loyal to the notion of modeling »as-human-as-possible« behavior

than others. All the architectures examined have some theoretical commitment to parallelism,

specifically in memory retrieval, and also employ one or a few decision modules. Connectionist

approaches demonstrate weaker performance in the broad functionality cognitive architectures offer at

best, and although they sometimes serve as significant components in larger architectures, such as in

CLARION (Sun, Merril & Peterson, 2001), I will not discuss them in detail for the reason.

I will start by discussing three related production systems, Soar, EPIC, and ACT-R/PM. They

were originally developed to model slightly different aspects of human cognition. However, as they

develop, there appears to be more convergence than divergence. (Byrne, 2001).

Cognitive architectures 21

Soar

Soar (Laird, Newell & Rosenbloom, 1987, as cited in Langley, Laird, Rogers & Sun, 2008) is

a cognitive architecture that has been developed since the beginning 1980's. It contains procedural

long-term knowledge in the form of production rules, organized in terms of operators associated with

different problem spaces. The operators range from those describing simple, primitive actions with the

intention to modify the agent's internal state or to generate primitive external actions, to others

describing more abstract activities (Langley et al., 2008). Soar used to represent all long-term memory

in this manner, but has recently had additions of episodic and semantic memories; the episodic

memory holding a history of previous states, whereas the semantic memory contains previously

known facts.

All of Soar's tasks are attempts to pursue a given goal. The knowledge components are used to

dynamically determine the selection and application of basic deliberate acts performed by operators.

The system moves through one decision at the time, repeatedly suggesting, selecting and applying

different operations. Soar also contains a learning component to determine which operator to apply

when an abstract operator cannot be implemented, by creating a new goal to determine which operator

should be implemented and how. The nature of this process leads to the generation of a goal hierarchy,

where the problems are decomposed into sub problems when necessary, so that the current state of a

specific goal includes the features of its super ordinate goals and the state of any additional cognitive

structures bound to pursuing the goal. Information obtained by sensors about the external environment

is available to both sub- and superordinate goals. Then the blockage generating a sub goal is solved,

that goal disappears, along with its related sub-goals.

Soar includes different learning mechanisms for different types of knowledge: chunking and

reinforcement learning for procedural knowledge (reinforcement learning adjusts numeric values

associated with rules that help select operators), and semantic and episodic learning for declarative

knowledge. Chunking is the learning process, where one or multiple results are produced in a sub goal,

and represented as a new production rule as a summarization of the process leading to the results – a

process similar to that in ACT-R. Once the system has learned a chunk, it will be applied as a possible

Cognitive architectures 22

action pattern in new situations similar along relevant dimensions to the situation where it was learned,

attempting to avoid the blockage that lead to its formation.

Soar has been used to develop a variety of sophisticated agents demonstrating impressive

functionality (Langley et al., 2008), for example, the TAC-Air-Soar, modeling fighter pilots in air

combat scenarios. Soar has also been used in the realization in numerous intelligent non-player

characters in interactive computer games (Haunt 2, on the UT game engine; Laird, Magerko, Kerfoot

& Stokes, 2004). Other applications involve modeling details of language processing (Lewis, 1993, as

cited in Langley et al., 2008), categorization (Miller & Laird, 1996, as cited in Langley et al. 2008),

and other aspects of cognition, but overall Soar has been developed towards high-level functionality,

rather than as-good-as-possible fit to experimental data.

EPIC

EPIC (Meyer & Kieras, 1997) is a production system cognitive processor, which also includes

perceptual and motor processors. It encodes long-term knowledge as production rules and organizes

them as methods for accomplishing goals which match elements in a variety of its short-term

memories, including visual, auditory and tactile buffers. The system selects matched rules and applies

them in parallel to control eyes, hands, or to alter the memory contents. EPIC focuses strongly on

achieving quantitative fits to human behavior, and as a multimodal system it has a great emphasis in

human-like problem solving and performance on tasks involving interaction with complex devices.

Due to the sensory-motor approach of the system, it is excellent in predicting strategies, performance

and typical errors in a task employing multiple sensory systems. It is also relatively simple to program,

as the underlying architecture is relatively simple, however as it is primarily an academic research

system, it has limited support and poor commercial availability (Kieras, 2005). Additionally, it offers

no coverage of intermediate to longer-term memory phenomena (and as such is not very adequate for

modeling learning in a multimodal task environment). The perceptual/motor systems offer many

details and parameters to be specified to fit the task of interest, but this also leads to the modeler

having to confront more details than she might really like to.

Cognitive architectures 23

EPIC-Soar

EPIC-Soar is just what it sounds like, a combination of EPIC and Soar, two complementary

cognitive architectures, with functions and features of both combined into one. Since I’ve already

discussed features of both, I will only discuss the special features of their combination. An unusual

thing about the architecture is that it has no declarative knowledge representation (Kieras, 2005). The

system is well-established in the AI community and offers good software support and training courses.

Additionally, it is included in several commercial-grade applications and easily accessible through a

website. The combination of EPIC and Soar costs some money, whereas Soar itself is available free of

charge. Unfortunately, the psychological basis of learning and reasoning is not as well developed as in

some other cognitive architectures, and the program is said to be very difficult to program (Kieras,

2005).

ACT-R/RP

ACT-R is one of the latest families of cognitive architectures (even though it has been around

since 1970’s, concerned primarily with modeling human behavior (Langley, Laird, Rogers & Sun,

2008). It is a hybrid production system architecture, with neural-net like activation mechanisms, its

infrastructure is related to components from cognitive neuroscience, and the system has a heavy

emphasis on activation and learning mechanisms (Kieras, 2005). The ACT-R community aims at

building a system that can perform the full range of human cognitive tasks and describe in detail the

mechanisms underlying perception, thinking, and action (Dutch, Oentaryo & Pasquier, 2008). ACT-R

6 includes sensory modules for visual processing, motor modules for action (adopted from EPIC;

Kieras, 2005), an intentional module for goals and a declarative module for long-term declarative

knowledge (Langley et al. 2008). Each module has a buffer, which all together comprise ACT-R’s

short-term memory. It also has a long-term memory of production rules to coordinate processing of the

modules.

ACT-R functions by determining which productions match against the contents of the short-

term memory and then computing the utility for different productions by calculating the difference

Cognitive architectures 24

between its expected benefit (the goal’s desirability times its probability of success) and its expected

cost. The system selects the production with the highest utility and executes its action. The situation

changes, leading to the evaluation of new possible productions and actions.

ACT-R learns on both structural and statistical levels. The base activation for declarative

chunks increases when they’re associated with selected productions and decays when they’re unused

for a long time, and the cost and success probability for productions goes through updates as the

system gains “experience” by observing its own behavior. The architecture is capable of learning

entirely new rules by analyzing rule firings, replacing constants with variables and combining them

into new conditions and actions (Taatgen, 2005; as cited in Langley, Laird, Rogers & Sun, 2008).

The ACT-R has been used to model numerous phenomena from experimental psychology,

such as memory, attention, reasoning, problem solving and language processing, and there are several

publications reporting accurate fits to quantitative data about human reaction times and error rates

(Langley, Laird, Rogers & Sun, 2008). Anderson, (2007, as cited in Langley et al, 2008) has related

ACT-R modules to different brain areas and developed models that match results from brain imaging

studies. On an applied front, the architecture has played a central role in a widely used school tutoring

system (Koedinger et al. 1997, as cited in Langley et al., 2008), and it has been used to control mobile

robots that interact with humans (Trafkon et al., 2005, as cited in Langley et al., 2008). ACT represents

one of the most adequate types of cognitive architectures at this time. It has a very active user

community consisting primarily of psychologists – it is the best known of current psychology-based

systems (Kieras, 2005). The team offers training programs, good client support and commitment to

user-friendly software, however since the ACT is primarily an academic research system, its value for

large scale applied problems is not clear. Additionally, it lacks perceptual and motor representations.

ICARUS

Icarus is a recently developed architecture (Langley, Cummings & Shapiro, 2004, as cited in

Langley, Laird, Rogers & Sun, 2008). It stores two distinct forms of knowledge – concepts, which

Cognitive architectures 25

describe classes of situations by comparing them to other previously known concepts and percepts,

and skills, specifying goal-achievement behaviors and decomposing them to subordinate goals.

ICARUS functions in a somewhat different way from the older cognitive architectures

presented earlier. The system basically searches for visible objects and deposits their descriptions into

a perceptual buffer. It then compares the “perceptions” to primitive concepts and adds matched

instances to its STM as “beliefs”. These activate matching higher-level concepts, allowing the system

to deductively search for all other implied beliefs. After this, the system finds a path downward

through its skill hierarchy, where each sub skill has satisfied conditions but an unsatisfied goal. The

path terminates in a primitive skill with executable actions, which the system applies to influence the

environment. This process leads to new percepts through the perceptual buffers, changes in beliefs,

and the execution of other skill paths to achieve the agent’s goals as a response to the first action.

When the system fails to find any applicable path through the skill hierarchy in order to achieve its

top-level goal, it applies a kind of means-ends analysis to solve the problem. This process backs

begins acting around either a skill that would typically achieve the current goal, or attempts to redefine

the goal so that it resolves the problem a step at the time, executing necessary actions as they become

applicable. Whenever this problem solving achieves a goal, the system creates a new skill indexed by

that goal, which it then executes if it finds itself in a similar position.

ICARUS has been specifically useful for tasks requiring a combination of inference,

execution, problem solving and learning, across multiple domains, ranging from computerized

solitaire, through simulating drivers in an urban virtual environment, to planning large scale logistics.

ICARUS is also linked to physical robots carrying out interactive or joint task activities with humans.

Critique and problems in applicability

Although cognitive architectures provide a useful tool for practical applications as well as a

theoretical base for research, they have some questionable aspects and shortcomings of theoretical,

philosophical and practical nature. I will dedicate this section to discuss some of my own questions

Cognitive architectures 26

about the nature of cognitive architectures, as well as those raised by researchers who are obviously

more qualified in the field and, thus, likely bring out more relevant points.

My first argument lies on Newell’s (1973) second injunction on cognitive experimentation,

where he warned against averaging methods, as it leads to either poorly deviated results or regularity.

If Newell (1973) considered averaging experimental results a bad idea, then on what results should a

programmer base their cognitive model? If a cognitive architecture must be based on extensive

experimental results across the relevant domain, then do the results not need to be averaged some way

to be useful for building a single architecture? In this way, is a cognitive architecture not an expression

of the average human’s average performance, completely ignoring individual differences, which we

have reason to believe should distribute normally; and if a cognitive architecture attempts to take into

account individual differences in predicting performance, then how is that practically taken into

account? This is obviously not really a problem in using an architecture to create a human-like

intelligent agent, but does pose a problem when using an architecture-based model in a phenomenon

greatly influenced by individual differences.

This leads me to another problem; applying the architectures in a practical situation where the

idea is to model individuals that have been proven to somehow vary from the normative population the

architecture is based on. For example, cognitive architectures have been used to model fighter pilot

performance (e.g. Jones, Laird, Nielsen, Coulter, Kenny, & Koss, 1999). Since the pilots are selected

with extensive psychometric and physical testing and then go through extensive training before

allowed to fly their vehicles, is it realistic to assume that an architecture based on an average

individual would provide an adequate model of, and perform similar errors, as an actual fighter pilot?

Additionally, would the pilot's affective state in an actual combat situation bring performance variance

that would be difficult to capture with an architecture that includes no conative component? Jones et

al. (1999, as cited in Byrne, 2001) explicitly wished to use the cognitive architecture model in their

research on fighter pilots in order to »eliminate the need for expert participants«, which in my opinion

was a mistake, since it is – again, in my opinion – realistic to assume that an expert participant would

be significantly different from the agent of the architecture. The idea was especially strange, since the

Cognitive architectures 27

research was carried out by the U.S. military, which, I imagine, would have easy access to interview

expert fighter pilots.

Another question is whether or not a cognitive architecture provides anything more than their

programmers and the experts participating in the process can provide without any kind of a

computational model. Or, in other words, if the computer model is really a necessity if the same

solution can be acquired with the same development team, using other means – in the most extreme

case, only pens and papers. If a cognitive architecture is used to supplement information gained from

an expert system, and the architecture is also specified after an expert in the specific field, does it

really provide any new information? This is an important question, if time and resources are limited –

especially if the person interested in the information would have to outsource personnel for the

cognitive model.

Another issue with the direction computational computer modeling has taken on is that

Newell’s critique is again becoming more and more topical, but when it was earlier directed at

experimental cognitive psychology, it could now be directed at computational psychology and

artificial intelligence. As AI and cognitive science have matured, they have fragmented into several

well-defined sub-disciplines, with different interests, goals and independent criteria for evaluation

(Langley, Laird, Rogers & Sun, 2008), despite the fact that commercial and governmental applications

require increasingly integrated intelligent systems, not just improved system components. Newell’s

critique against setting binary distinction is also relevant to the field, as different schools disagree on

whether processing should be parallel to model neurons and brain function as a base for every

application, or if it is arbitrary how the system is constructed, as long as it is a good-enough model of

its intelligent agent. In a way, computational modeling just changed the platform of Newell’s

arguments from experimental cognitive psychology to cognitive modeling.

Human behavior is variable across different domains, with different variables causing different

responses depending on environmental parameters. Responses also vary from individual to another

due to individual differences. Theoretically it would be necessary to know all parameters and all

Cognitive architectures 28

individual characteristics to build and specify a cognitive model that would model one individual

person, and so we’d need an infinite amount of models to display performance of each individual

person with their individual differences, and we would still not have perfect predictive power. In my

opinion, this displays how the power of cognitive models is in some ways limited to either the creation

of intelligent agents or to modeling behaviors where there is relatively little individual variation.

Granted, judging by the literature I’ve reviewed for this seminar, they appear to provide solid

performance when used for this purpose.

Cognitive architectures 29

References

Benjamin, D. P., Lonsdale, D. & Lyons, D. (2004). ADAPT: A Cognitive Architecture for Robotics.

International Conference on Cognitive Modeling, Pittsburgh PA, July 2004.

Duch, W., Oentaryo, R.J. & Pasquier, M. (2008). Cognitive architectures: where do we go from here?

Frontiers in Artificial Intelligence and Applications, 171, 122-136

Gärdenfors, P. (2004). Conceptual spaces as a framework for knowledge representation. Mind and

Matter (2)2, 9-27.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999). Automated

intelligent pilots for combat flight simulation. AI Magazine, 20(1), 27-41.

Kieras, D. (2005). A survey of cognitive architectures – pros and cons of existing architecture

applications. University of Michigan.

Kieras, D.E. (2007). The control of cognition. In W. Gray(Ed.), Integrated models of cognitive

systems. Oxford University Press.

Langley, P., Laird, J.E., Rogers, S. & Sun, R. (2008). Cognitive architectures: research issues and

challenges. Cognitive Systems Research, doi:10.1016/j.cogsys.2006.07.004

Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., & Stokes, D. (2004). AI characters and directors

for interactive computer games. In Proceedings of the sixteenth innovative applications of

artificial intelligence conference (pp. 877–884). San Jose, CA: AAAI Press.

Meyer, M., & Kieras, D. (1997). A computational theory of executive control processes and human

multiple-task performance. Part 1: Basic mechanisms. Psychological Review, 104, 3–65.

Newell, A. (1973). You can't play 20 questions with nature and win: Projective comments on the

papers of this symposium. In W. G. Chase (Ed.), Visual information processing (pp.283-308).

New York: Academic Press

Cognitive architectures 30

Ritter, F. E. & Young, M. R. (2001). Embodied models as simulated users: introduction to the special

issue on using cognitive models to improve interface design. International Journal of Human-

Computer Studies, 55, 1-14

Sammut, C. (1996). Automatic construction of reactive control systems using symbolic machine

learning. Knowledge Engineering Review, 11, 27–42.

Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit knowledge: A bottom–up

model of skill learning. Cognitive Science, 25, 203–244.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT

Press.

Van Merrienboer, J. J. G., Paas, F.G.W.C, & Sweller, J. (1998). Cognitive architecture and

Instructional Design. Educational psychology review, 10(3), 251-296

	Cognitive models and cognitive architectures
	Capabilities of cognitive architectures
	Recognition and categorization
	Decision making and choice
	Perception and situation assessment
	Prediction and monitoring
	Problem solving and planning
	Reasoning and belief maintenance
	Execution and action
	Interaction and communication
	Remembering, reflection and learning
	Properties of cognitive architectures
	Knowledge representation
	Organization of knowledge
	Utilization of knowledge
	Acquisition and refinement of knowledge

	The use of cognitive architectures; what are they good for?
	Soar
	EPIC
	EPIC-Soar
	ACT-R/RP
	ICARUS

	Critique and problems in applicability
	References

