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Typically, papers on cognitive architectures appear to begin with a short account of their 

history, and the accounts for the history of cognitive architectures typically approach the theme from 

the first computational cognitive models (often the GPS, by Newell and Simon, 1963 – already ten 

years before Allen Newell’s paper, 1973, discussed in detail in the following paragraphs), then 

forwarding the theme by explaining how newer models were based on the first ones, how they became

more elaborate over time, introducing their applications and domains. Often, Allen Newell’s 1973 

paper is mentioned shortly, possibly even as a side note. However, I find that if the audience of the 

paper is not well-acquainted with the concept and uses of computational cognitive models (including 

cognitive architectures), Newell’s (1973) critical vantage point is a very good start point for 

approaching the subject, as it explains what shortcomings of the experimental paradigm the first 

computational models attempted to mitigate. 

In 1973, Allen Newell was given a task to comment on every paper appearing in W.G. Chase's 

(Ed.) symposium on visual information processing. Rather ambitiously, Newell decided to not only 

comment on every paper, but also to attempt to draw a conclusion that would give a holistic picture of 

visual processing – a decision he claims he soon regretted (Newell, 1973). After realizing the 

impossibility of the task, Newell (1973) titled his paper (which is now considered a well-read classic 

and which is quite an entertaining read – highly recommended) »You can’t play twenty questions with 

nature and win«, and dove into the problems of cognitive psychology of his time (and largely what is 

still one of the key issues in cognitive psychology as well as AI in the more recent years). 

Newell (1973) expressed his despair over how nearly all experimentalists of  his time were 

dealing with their own little areas, performing what he thought were absolutely magnificent 

experiments and concluding interesting results, but driven by mutually exclusive binary distinctions 

(nature or nurture, parallel or serial, central or peripheral) and with very little interest in drawing 

together with other studies to create a thorough, holistic picture of human cognition, where processes 

could happen simultaneously on multiple systems level on several different ways, influenced and 

modified by several different factors.  He pointed out that there were a few strands of theory that 

throve for some quantitative explanation over a class of phenomena, but they were not common 
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enough to »quiet his concern«. He argued that if something was not to change soon to provide the field

a »path to clarity«, the situation was to get muddier and muddier. His key issue was stated as follows: 

»Science advances in playing twenty questions with nature. The proper tactic is to frame a 

general question, hopefully binary, that can be attacked experimentally. Having settled that 

bits-worth, one can proceed to the next. The policy appears optimal – one never risks much, 

there is feedback from nature at every step, and progress is inevitable. Unfortunately, the 

questions never seem to be really answered, the strategy does not seem to work.« (Newell, 

1973, p. 290).

In his paper, Newell diagnoses the problems he found in an attempt to make a synthesis on the 

paper, and writes down two injunctions on how to approach cognitive experimentation: 

1. Know the method your subject is using to perform the experimental task. Behavior is 

programmable. This means that it is under the control of the subject as means to his own ends. 

To predict behavior, you must know his goals, the structure of the task environment, and the 

invariant structure of his processing mechanisms. From these, you can predict what methods 

are available to the subject.

2. Never average over methods. Uncertainty of which method the subject uses takes substantial 

space in discussion of experimental results, but averaging methods leads to either “garbage, or,

even worse: spurious regularity” (Newell, 1973, p. 295).

Newell (1973) argued that the task in psychology is first to discover the structure of the 

subject, which is fixed and invariant so that we can theoretically infer the method it would choose for 

solving a task (this, I suspect, is also why cognitive architectures prefer to model subject 

characteristics that are relatively stable over time, as I will explain later). Then, once we know the 

subject’s goal and the task environment, we generate a small collection of methods that are likely to be

used by him in the task, and with careful experimental design or by suitable post hoc analyses, we can 

find out what method he selected. He explains that the reason for numerous correctional experiments 

in cognitive psychology is likely the fact that subjects opted for new methods to approach the problem 
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– by predicting likely methods beforehand, it would be possible to exit the loop of repeating 

correctional experiments. Newell (1973) argued that where experimentalists in cognitive psychology 

often did attempt to pick a couple of methods their subject could have used to approach the task, or 

portrayed the entire set of processing stages in a flow diagram (a novelty at his time), they often left 

open the total method being used, and did not operate within a frame, a control structure, which would

constrain what other methods might also be evoked to perform the same task. This brings us to 

computational cognitive models, as Newell argues that the control structures are best illustrated by 

programming languages. A rather simplified account of Newell’s explanations is that programmed 

algebraic structures work well for making natural constraints (or control structures) in that they create 

a space where different methods can be tested if they conform to the limitations of space and time. 

In order to remedy the problems he pointed out, Newell (1973) suggested three approaches, or 

paradigms, to experimentation:

1. Complete processing models:  Newell (1973) suggested that scientists should attempt to 

construct complete processing models, rather than partial ones as was the tradition. Newell 

also argued that the control processes employed here should be psychologically relevant.

2. Analyzing complex tasks: Focusing on a single complex task instead of designing specific 

small experiments to try and settle specific small questions would, and making sure that 

experiments employing those complex tasks could be sown together and each contribute its 

own detail to a bigger picture.

3. One program for many tasks: A third solution would be to construct a single system to perform

a diverse collection of small experimental tasks.  This suggestion contains the concept of both 

cognitive architectures, as well as psychometric artificial intelligence, as Newell proposes that 

an alternative mold would be to construct a single program that could take a standard 

intelligence test.

Although computational cognitive models were certainly already around before Newell’s 

critique of cognitive psychological experiments in 1973, I believe Newell’s contribution helped raise 
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them more towards the main streams of cognitive research, where in the sixties, computational 

cognitive models were the subject of only a handful of scientists (including Newell himself, rather 

unsurprisingly). Langley, Laird, Rogers and Sun (2008) refer to Newell’s (1973) text as a “call to 

arms”, which elicited a response in the scientific community and triggered new lines of research and 

modeling, mainly the specific class of architectures called product systems. Over the past decades, a 

variety of other architectural classes has emerged, some less concerned with human behavior than 

others. In the nineties, the movement transferred beyond basic research into the commercial sector 

with applications such as creating believable agents for simulated training environments, computer 

tutoring systems and interactive computer games (Langley et al., 2008).

Cognitive models and cognitive architectures

Cognitive models are simply models of human cognition, typically presented in the form of a 

more or less automatic cognition-simulating computer model. This allows us to inspect the behavior of

the agent of the model, to predict it and its outcomes, observe the path of its unfolding. Cognitive 

models provide means for applying knowledge gathered by psychology along the years to a range of 

different domains, such as designing instruction (e.g. Merriboer, Paas & Sweller, 1998),  designing and

simulating functional behavior in non-human intelligent agents  (e.g. the ADAPT-architecture for 

robotics; Benjamin, Lonsdale & Lyon, 2004),  and the design and optimization of user interfaces (e.g. 

Ritter & Young, 2001). 

Contemporary cognitive models are often created in the form of cognitive architectures, which

differ in some ways from just any cognitive model. Cognitive architectures are much like foundation 

blocks to a building, so that part of the content of the created model (or the finalized house in our 

analogy) belongs to the outlying architecture, and part of it is supplied by the analyst, who adds to the 

generic architecture in order to construct a specific model. All models that are constructed around the 

same architecture share features of the architecture, as the architecture provides constraints to the 

model. What distinguishes the different models is information that has been added to the architecture 

in order to build them (Ritter & Young, 2001). 
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Dutch, Oentaryo and Pasquier (2008) define the concept of a cognitive architecture as a set of 

rules, for an intelligent agent, by prescribing computational processes with the intention of modeling a 

given cognitive system the architecture is designed for, most often a person or some other entity that 

can be considered intelligent under some definition. Although their definition is certainly extensive, 

Dutch, Oentaryo and Pasquire (2008) miss the central notion that the key idea of a cognitive 

architecture is to simulate human performance, in a human-like way (Byrne, 2001); very different 

from the engineering-approach to artificial intelligence, where the intention is to model the process 

with »any means necessary« using any available technology that would fit as means to an end. As an 

example, Byrne (2001) describes the Deep Blue chess program, which would not qualify as a 

cognitive architecture, because its problem solving is not human-like, but rather, based on massive 

searches of the entire game space. Byrne describes cognitive architectures as attempts to describe the 

overall structure and arrangement of the human cognitive system – a broad theory of human cognition,

based on extensive experimental data transformed into a running computer simulation program. Ritter 

and Young (2001) define a cognitive architecture as an embodiment of »a scientific hypothesis about 

those aspects of human cognition that are relatively constant over time and relatively independent of 

the task«, and Langley, Laird, Rogers and Sun (2008) add that the term »architecture« implies that the 

intention is not only to model behavior or performance, but that a key notion is modeling the entire 

outlying infrastructure of the system.

Kieras (2007) explains that one of the first intentions of creation of cognitive architectures was

to provide a balance to the so-called box-system that had been popular in cognitive psychology. Such 

models attempted to illustrate flow of information and storage mechanisms in different processing 

stages.  Kieras (2007) argues that the problem with the typical box model was that sensory and motor 

organs were rarely included, and if they were, they were not presented in sufficient detail. He goes on 

to explain that since most of these models were created in service of different memory paradigms, it 

made sense that storage systems were emphasized, but that also limits their use  for other applications. 

Additionally, the box models did not provide a perfect model even for the memory paradigms, for 

which they were created, since the contents of the storage systems were loosely specified in terms of 
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»features«, the processes of information exchange between different storage systems was rarely 

elaborated in sufficient detail, and often it was assumed that there was some kind of a vague executive 

process or component somehow responsible for overseeing, maintaining and managing function of the 

other components (Kieras, 2007). The components and processes in these box models were extracted 

from simple probability theory models for each individual box (such as what the probability might be 

for an item to be lost over time or information to be successfully transferred from one system to 

another (Kieras, 2007). Since each component was subsumed by a different probability model, 

interaction between the individual components may not have been modeled sufficiently or at all.

If we compare a more modern cognitive architecture model to one of the simpler box-models, 

we notice that they attempt to approach the modeled agent with a more holistic, dynamic approach. 

They typically still contain the box-model as an integral part of the architecture, but also – depending 

on the intention of the architecture and the modeling agent – other factors and processes, such as 

sensory-motor peripherals and separated memory and processing systems (Kieras, 2007). Where the 

“executive” component pulls together the box diagram, its use is avoided in a cognitive architecture by

distributing its functions into different, more clearly defined processes between the different 

components, and by subsuming the entire architecture under a “cognitive processor”, which in 

addition to performing cognition also controls the system as a whole, including itself (Kieras, 2007), 

(although in my opinion, one can question whether the cognitive processor and the executive 

component in the box systems really are that different from one another, and whether the cognitive 

processor could not be considered just a more elaborate notion of the executive).

Cognitive architecture research supports the creation and understanding of synthetic agents 

that support the same capabilities as humans; a central goal of artificial intelligence and cognitive 

science (Langley et al., 2008). But there is variability between cognitive architectures themselves, 

depending on numerous different factors. For example, architectures are created for different 

intentions, such as making an as-good-as-possible summary of quantitative data from cognitive 

psychology, or by focusing more on functional behavior and focusing on modeling functional behavior

while not following experimental data in such a conscientious manner. Other models focus on detailed 
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accounts of all variables influencing behavior, while others aim at simplicity. Some include 

perceptional and motor components, where others only attempt to model memory and learning 

(compare e.g. EPIC and and ACT-R). Also the programming language the architecture is written in 

creates some variation (Kieras, 2005), as does the agent they attempt to model. For instance, one 

architecture may focus on modeling inherent aspects of human cognition, where another may be an 

attempt to create an effective path to building intelligent agents or optimizing their performance (such 

as the ADAPT architecture for robotics; Benjamin, Lonsdale & Lyons, 2004). 

A recent trend has been to add actual extensions to the models built on an architecture (such as

simulated eyes or hands, depending on what is relevant to the task), enabling construction of embodied

models. Embodied models have the benefit of interacting directly with interfaces, allowing direct 

evaluation of the interface as well as better predictions and explanations for user behavior (Ritter & 

Young, 2001). 

Capabilities of cognitive architectures

Not just any cognitive model qualifies as a cognitive architecture. I explained earlier that 

cognitive architectures function as blueprints for modeling performance and behavior of some 

intelligent agent. A cognitive architecture specifies the underlying infrastructure of an intelligent 

system, including aspects that remain relatively constant over time and across different application 

domains, including (Langley, Laird, Rogers & Sun, 2008):

a) The short-term and long-term memories that contain the agent's beliefs, goals and knowledge

b) The elements contained in short- and long-term memory and their organization into mental 

structures on a larger scale

c) The functional processes operating on these structures, including performance mechanisms 

that utilize them, and learning mechanisms that alter them

The memory contents of a cognitive architecture have a certain alterability to them: because 

the contents of a modeled' agents memories can change over time, different knowledge bases and 

beliefs can be interpreted by the same architecture. Langley et al. (2008) draw an analogy from an 

apartment, where there are structural parts that remain the same, such as walls and foundations, and as 
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well as furniture and appliances that can be both moved and replaced. Architectures differ in their 

specific assumptions about the alterability and use of memory contents, similarly as to how some 

apartment have built-in bookshelves or have appliances fixed to the structures, whereas others have 

freely movable furniture.

A few other abilities, such as recognition and decision-making, are a necessary requirement to 

support a well-defined architecture, but cognitive architectures frequently employ other functions, too,

depending on their domain and intention of use (Langley, Laird, Rogers & Sun, 2008). A central issue 

is how to design the architecture so that the agent can access different sources of knowledge (Langley 

et al., 2008). For example, the system needs some kind of a perception function to gain knowledge 

about the environment, and planning, reasoning and prediction are required to know the implications 

of the current situation. Knowledge from other agents comes through communication, and knowledge 

about past situations requires memory and learning (Langley et al., 2008). The more of these abilities 

the architecture supports, the more sources of knowledge it can access to guide its behavior. 

Another thing to define is whether the architecture should support these abilities directly with 

an embedded process, or if it should provide ways to implement them. The decision influences what 

the agent can learn from experience, what the designer can select to optimize for their model, and what

specialized mechanisms are available for which functions (Langley et al., 2008). 

Next I will go through some of the most common and fundamental capabilities of different 

cognitive architectures, abstracted largely from Langley et al. (2008), who provide an excellent 

account on the subject.

Recognition and categorization

Recognition serves as a contact between the agent’s environment and its knowledge by 

allowing recognition of situations or events as reproductions of familiar patterns. Recognition can be 

static (e.g. recognizing letters that make up a word) or dynamic (e.g. recognizing a sequence of 

movements). Recognition is closely related to categorization; assigning objects, situations and events 
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to known concepts and categories. Recognition and categorization are tightly linked to perception, as 

they operate on output from the perceptual system.

To support recognition and categorization, a cognitive architecture needs to provide a way to 

represent patterns and situations in memory (Langley et al., 2008). It also needs some recognition 

process that lets it identify when (and to what degree) a particular stimulus matches a stored category. 

An architecture should also involve some mechanism for learning new categories from instruction or 

experience, and for modifying existing categories when necessary.

Decision making and choice

The system needs the ability to make decisions and discriminate among alternatives to operate 

in its environment. Decisions are typically associated with recognition of a situation or a pattern and 

then behaving accordingly, which is why cognitive architectures typically combine the two 

mechanisms into a recognize-act cycle underlying all cognitive behavior (Langley, Laird, Rogers & 

Sun, 2008). Architectures also enable models with more complex decision-making than the recognize-

act cycles performed even on the architectural level, allowing modeling of complex, intelligent 

decision-making on different domains.

In order to support decision making, the system needs to provide some way of representing 

alternative choices or actions, and then some process for selecting among the alternatives – most 

architectures separate this step into two parts, where the system first determines whether a given 

choice is allowable (often by comparing it with some pattern and using it only if a match is found), 

and then selecting among different allowable alternatives, typically by computing them some 

numerical score and choosing one with a preferable score. This is called conflict resolution and it takes

a very different form in different architectures (Langley et al., 2008).

Finally, a good architecture also incorporates some way to learn better decision making 

(Langley et al., 2008). This can involve learning new alternatives, but most typically means revising 

the conditions under which an existing action is considered allowable or by altering the numeric 

functions used to define scores for different action patterns during the conflict resolution.
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Perception and situation assessment

A cognitive architecture also must provide some way for the modeled agent to sense, perceive 

and interpret its environment. Different modalities may be modeled, though the sensors range from 

simple devices like a thermometer to more complex mechanisms like stereoscopic vision or sonar 

generating a depth map in the area of the visual field. Perception can also integrate the results from 

different modalities into a single description of the environmental situation, which the architecture can 

represent then utilize by other cognitive processes (Langley, Laird, Rogers & Sun, 2008).

Perception covers many types of processing, from automatically supported simple ones to 

ones that require limited resources and need to be consciously invoked (Langley, Laird, Rogers & Sun,

2008). For example, our visual system detects peripheral movements automatically, but the fovea only 

extracts details from the small area where it is pointed. Actively directing the fovea to a point of 

interest calls for attention, which also needs to be included in a cognitive architecture for it to be able 

to direct its limited perceptual resources to detect relevant information in a complex environment 

(Langley et al., 2008). An architecture acquires and improves its perceptual knowledge about what 

sensors to invoke and where to focus them by learning from previous experiences, thus making it more

efficient in a noisy, dynamic environment. 

It’s also not sufficient for a model to perceive isolated objects and events, but it needs to be 

programmed to understand and interpret the broader environmental situation. This calls for the agent 

to be able to combine perceptual information about many entities and events, from many sources, to 

compose a large-scale model of its current surroundings and internal states. This process relies on 

recognition and categorization and on inferential mechanisms.

Prediction and monitoring

One intention of cognitive architectures is to make predictions about future situations and 

events, based on the time and experiences they have had in an on-line state.  Making a prediction 

requires some internal model of the environment and of how actions influence it, and a representation 

of this in the agent’s memory. One approach involves mapping a description of the original situation 
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and the decided action, to a description of the resulting situation. Another approach is to encode the 

effects different actions have in changing the environment. Both cases require some mechanism that 

uses knowledge structures to predict future situations, e.g. by recognizing a class of situations where a 

certain action will have a certain effect. Ideally an architecture should also be able to learn predictive 

models from experience, and to optimize them over time. (Langley, Laird, Rogers & Sun, 2008).

An architecture with a mechanism for making prediction can also use it to monitor the 

environment. However, this poses an issue for architectures with limited perceptual resources (such as 

the ACT-R), because monitoring relates perception to prediction (Langley et al., 2008). 

Problem solving and planning

Cognitive architectures must be able to generate plans and solve problems, because their 

modeled agents need to achieve their goals in new situations. Planning is only possible, if the agent 

has an environmental model that predicts the outcomes of its actions. Additionally, the architecture 

must be able to represent a plan as a sequence of actions, their expected outcomes, and what new 

actions their execution will enable. The plan structure can also include conditional actions (“in the 

form of “perform x only if y=1”) and different branches that depend on the outcome of earlier events 

(“if x leads to z, perform y, otherwise perform c”). 

Planning can take advantage of numerous systems embedded in the architecture, such as low-

level motor and sensory actions, but always require some sort of memory, problem solving and search.

The challenge is to perform actions through a sequence of problem states, where at each step the 

system needs to consider applicable operators, select one or more, and apply it, leading to a new 

problem state. This is then repeated until a plan is found acceptable, or the system gives up. Being able

to predict several sequences ahead makes problem solving easier, but how many steps ahead the 

system can think depends on its working memory and overall capacity. Even primitive potential for 

machine learning is of great use, since it allows the system to detect planning and problem solving 

patterns that have proven useful previously. There are different ways to achieve this. An architecture 

can learn from direct instruction, from the results of a problem-space search, by observing another 
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agent’s behavior – also called behavioral cloning (Sammut, 1996, as cited in Laird, Langley, Rogers &

Sun, 2008), or from delayed rewards via reinforcement learning (Sutton & Barto, 1998, as cited in 

Laird et al., 2008). There are two ways learning helps problem solving: by reducing the branching 

factor of search, either by utilizing heuristic conditions or by refining a numeric evaluation function to 

score different options, in order to guide the agent’s choice. The system can also store plans which 

makes a search faster since it allows it to take larger steps in the problem space, essentially skipping 

multiple problem stages.

Sometimes it is necessary to modify an existing plan in response to unexpected changes in the 

environment, for example, when a situational variable changes so that the action plan is no longer 

applicable, or when a new situation brings some more beneficial way of performing the action 

sequence. Changing action in this case is possible only for a system capable of monitoring its own 

performance. 

Reasoning and belief maintenance

Reasoning is the process of drawing mental conclusions from other beliefs or assumptions that

are known to hold (Langley, Laird, Rogers & Sun, 2008). In order to support such a process, an 

architecture must be able to represent relationships among beliefs. Typically these relationships are 

coded in first-order logic, but other systems have been applied, such as neural networks, production 

rules and Bayesian networks (Langley et al., 2008). Reasoning can also be heuristic or approximate, 

not necessarily logical, and still prove useful for an intelligent agent – this is also sometimes closer to 

the reality of human reasoning and in some cases may thus even be preferable to other types of 

inferences. Deductive reasoning is often used as a mechanism to draw inferences using knowledge 

structures. Inductive reasoning is also a possibility, as is abductive inference. Selecting which method 

of inference to apply happens similarly as plan making or problem solving, in a sequence of evaluative

steps. 

Cognitive architectures infer new beliefs as well as decide whether to maintain old ones. 

Certain beliefs depend on others, and the agent needs to track the latter to determine whether it should 
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continue to believe in the former, abandon it, or alter its confidence. This process is called belief 

maintenance, and it is especially important in dynamic environments with unexpected changes. It also 

necessitates a dependency structure that connects beliefs in the system’s memory.

Execution and action

Since cognition occurs to support and drive activity in the environment, a cognitive 

architecture must be able to represent and store motor skills enabling such activities. These can range 

from primitive, or component actions, to complex multi-step procedures (the latter is related to 

planning action sequences), however, a high-quality architecture should support anything from fully 

reactive and simple reactions to automatized, open-loop behaviors, as the capability of performing 

both is an inherent characteristic of nearly any intelligent system.

Actions and their sequences should also be learnable, by behavioral cloning, reactive learning 

or successfully achieving goals. Knowledge for action selection as well as skill complexity are also 

learnable in an optimal cognitive architecture.

Interaction and communication

Agents exist in environments in interaction with other agents, and communication allows one 

agent to obtain knowledge from another. The modality in which communication occurs can vary, but 

any communication allows for conveying any of the cognitive activities discussed so far (categories, 

decision making, perception, actions, predictions, plans, inferences, problem solving…) An 

architecture should support a mechanism for transforming this knowledge into a communicative form, 

the most common being spoken or written language, but in any case, in some natural or artificial 

language understood by both entities despite of different mental structures. Translating into an external

format requires planning and execution, whereas language comprehension requires inference and 

reasoning. Conversational dialogues pose a specific challenge by requiring both generation and 

understanding of natural language, as well as coordination with the other agent in the form of turn 

taking. 
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Remembering, reflection and learning

These are so-called meta-management mechanisms (Sloman, 2001, as cited in Langley, Laird, 

Rogers & Sun, 2008), not strictly required for an intelligent agent, but their inclusion significantly 

increases flexibility and robustness.

Remembering is the ability to encode and store results of cognitive processing in the system’s 

memory, for retrieval or access later on. To remember a cognitive activity, the architecture stores the 

cognitive structures created during that activity, indices them in its memory and retrieves them when 

needed. The resulting content is referred to as episodic memories (Langley et al., 2008). Reflection is 

the processing of either recently activated mental structures or older structures retrieved from the 

episodic memory. Explanation of an agent’s cognitive actions (such as inferences, plans, decisions) is 

one type of reflective activity, another one is meta-reasoning about other cognitive activities – a 

process where the agent explains the generation of its cognitive activities (e.g. its process of making 

inferences). Reflective processes leave their own traces and so may themselves be subject to 

reflection. 

The final meta-management mechanism is related to learning, which is typically an automated 

function in nearly any given cognitive architecture, not subject to the agent’s inspection or conscious 

control. With more elaborate learning systems, however, the agent gains the ability to transfer learned 

information either between similar tasks, within the same domain, and even to tasks within related but 

distinct domains. Data for learning can come from many sources, such as observation, problem-

solving, practice or known skills, but always involves the processing of memory structures with an 

intention to improve the agent’s capabilities (Langley, Laird, Rogers & Sun, 2008).

Properties of cognitive architectures

The internal properties of cognitive architectures largely define their capabilities. The 

properties can be split to the architecture’s knowledge representation, the organization of its 

knowledge, the manner in which knowledge is utilized, and the mechanisms for acquisition and 

revision of knowledge. I will discuss these shortly and with an attempt to avoid technicalities.
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Knowledge representation

Knowledge itself is not built into the architecture, as it can change across domains over time, 

and the architecture is there to model characteristics that stay stable over time. However, how the 

agent encodes its knowledge constitutes a central aspect of a cognitive architecture (Langley, Laird, 

Rogers & Sun, 2008), and different representational choices come with different advantages and 

disadvantages. The primary representational question is whether the system should use a single 

notation for encoding all its knowledge, or employ a mixture of formalisms. Selecting only one 

notation brings elegance and works well for abilities that must operate only on one type of structure 

(such as learning or reflection), but focusing on one framework forces the system to an unpractical 

approach towards certain problems (Langley et al., 2008). Langley et al. (2008) present distinguishing 

declarative and procedural representation as a common tradition, and explain that architectures 

typically include some of both. Declarative encodings are such that can be manipulated by cognitive 

mechanisms independent of their content, supporting very flexible use, but leading to inefficient 

processing. Procedural formalisms encode knowledge about how to complete tasks, are often 

represented as production rules, and allow efficient but inflexible application of knowledge. 

Some architecture also support meta-knowledge about the agent’s own capabilities. This type 

of knowledge supports meta-reasoning, and enables good understanding of the cognitive steps taken 

during an agent’s activities and the reasons for them. 

Tulving (1972, as cited in Langley et al., 2008) differentiates between semantic and episodic 

memory. Most architectures focus on semantic memory, whereas episodic memory appears better for 

retrieving specific facts and occurrences. In architectures, both can fundamentally serve the same 

purposes, so focusing on one does not necessarily limit the agent’s possibilities (Langley et al., 2008).

Through the time, knowledge representation has happened through different representational 

formalisms (Langley et al., 2008). Semantic networks encode both generic and specific knowledge in a

declarative format consisting of nodes (for concepts or entities) and links (relationships between 

them). Conceptual spaces (Gärdenfors, 2004) consist of a number of “quality dimensions” often 



Cognitive architectures     16

derived from perceptual mechanisms, capable of representing various kinds of information as well as 

to describe concept learning. First-order logic encodes knowledge as logical expression in terms of 

predicates and arguments, along wih logical statements about the relationships of the expressions such 

as conjunction, disjunction, negation and implication. Langley, Laird, Rogers and Sun (2008) also 

briefly describe  frames and schemas and plans, a structured framework for encoding courses of 

action. 

Organization of knowledge

Another important question is how the knowledge should be organized in the memory of the 

architecture. The first point to consider is whether the knowledge representation scheme should 

support hierarchical structures (Langley, Laird, Rogers & Sun, 2008). The decision influences whether

or not task hierarchies will be easily executed by the system, but different types of semi-hierarchical 

structures are also possible (Langley et al., 2008). The second point to think about considers the 

granularity of the knowledge stored in memory. For example, production systems and first-order logic 

constitute fine-grained knowledge, and so an architecture using them for encoding needs an interpreter

to compose them in order to achieve complex behavior. Coarse-grained structures store entire plans 

and macro-operators, which puts less burden on the interpreter but leads to less flexibility and 

generality of the applied knowledge. Langley et al. (2008) suggest a structured framework, which 

describes coarse elements in terms of fine-grained ones, giving access to both.

The final important point about knowledge organization is the number of distinct memories 

the architecture supports, and how they are connected to one another. The modeled agent needs to 

have some kind of long-term memory (LTM); the contents of the LTM should be relatively stable over 

time, but accessible to alteration through instruction and learning. The agent also needs short term 

memory (STM) to contain more dynamic and short-lived beliefs and goals. In most production system 

architectures, LTM and STM are structurally distinct but related through a process comparing the 

conditions of the LTM production rules to the STM structures (Langley et al., 2008).  Some 

architectures have distinct types of short- and long term memory, e.g. procedural, conceptual and 

episodic structures, as they appear in humans.
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Utilization of knowledge

The knowledge lying in the different memories must of course be utilized for the architecture 

to execute any cognitive activities. One question is whether problem solving should rely on heuristic 

search through the problem space, or on retrieving solutions or plans from the long-term memory 

(Langley et al., 2008). These approaches are not mutually exclusive, but an architecture typically 

focuses on one over the other. 

Approaches for architectures supporting multi-step problem solving and inference are forward

chaining, backward chaining and means-ends analysis. In forward chaining, the system applies 

relevant operators and inference rules to the current problem state and beliefs to produce new states 

and beliefs. Backwards chaining generates new sub goals from current goals, progressing from some 

goal state towards current states or beliefs. Means-ends analysis combines backwards and forwards 

analysis by selecting operators through backward chaining, but executing them whenever their 

preconditions are satisfied (Langley et al., 2008). It's important to differentiate between problem-

solving techniques supported by the architecture and ones implemented by knowledge. Different types

of knowledge utilization can occur in architectures that don't inherently contain them, if the conditions 

are met. 

Another central issue for knowledge utilization concerns the relationship between cognitive 

activities and action. Systems can be split to deliberate and reactive, in that deliberate architectures 

first plan or reason an action plan and after that begin its execution, whereas reactive architecture 

selects its action on each decision cycle based on its comprehension of the current situation. 

Deliberation has advantages in predictable environments, whereas reactive faire best in unpredictable 

circumstances. There is a similar point between perception and action. A closed-loop control system 

senses the environment on each cycle, providing an opportunity to respond to recent changes. And 

open-loop system runs a long action sequence over multiple cycles without sensing the environment.
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Acquisition and refinement of knowledge

Knowledge is acquired from instruction or experience, and both elicitation and execution of 

learning behaviors are handled at the architectural level. Some architectures support many such 

mechanisms, whereas others rely on a single learning process interacting with knowledge and 

experience to achieve different outcomes (Langley, Laird, Rogers & Sun, 2008). Some processes learn

entirely new knowledge structures, whereas others only modify existing functions. Existing structures 

can also be revised by adding or removing parts. Another common distinction is to differentiate 

analytical and empirical methods – where analytical knowledge acquisition relies on reasoning and is 

more exploratory in nature, empirical methods rely on inductive operations, detecting regularities and 

using them to transforming experience into usable knowledge of descriptive nature. Architectures can 

utilize hybrid methods of incorporating ideas from both frameworks as well as combine them through 

different mechanisms. 

The fourth issue concerns at what point the acquired knowledge should be incorporated into 

the system. Most frameworks are of a so-called eager approach, forming generalized knowledge 

structures from experience as soon as it enters memory, whereas those with the lazy approach store 

experiences untransformed, then perform implicit generalizations at the time of retrieval (Langley et 

al., 2008). 

Finally, learning occurs either in an incremental or non-incremental manner. Incremental 

learning incorporates training cases one at a time, with limited memory for previous  cases, so that the 

knowledge base is updated after processing every single experience. Non-incremental methods process

all cases in a single step. This is not as natural as incremental learning, because agents exist over time 

and accumulate knowledge gradually, but non-incremental learning avoids the drawback of order of 

presentation influencing behavior, as it does for  incremental learning utilized by most architectural 

systems. 
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The use of cognitive architectures; what are they good for?

Constructing a user model within a cognitive architecture ofers various advantages to the 

modeler. The architecture provides a framework to models that can be created on it by posing 

constraints. One of the consequences is that the constrained models allow identification of 

information, or knowledge, needed in order to perform the task being analyzed, as well as to 

differentiate what information is gained from the environment, and what of it is inherent to the 

modeled agent. Additionally, since models built around a common architecture share constraints and 

assumptions contained in the architecture itself, they can be relatively easily integrated into a coherent,

single model of a broader scope. This allows for the development of libraries of »behavior idioms« 

and partial models, which eases the task of constructing new models (Ritter & Young, 2001). For 

example, such a library already exists for the ACT-R architecture (Kieras, 2005).

Cognitive architectures contain cognitive mechanisms and resources that are relevant to the 

task at hand, allowing the analyst to recognize their meaning in successful performance or error 

generation. For example, for interface design such measures can include the working memory load, 

the time taken to learn an interface, what gets learned and the causes and types of errors in using it 

(Ritter & Young, 2001). They also provide a basis for teaching designers about users. Designers can 

refer to the architecture and its behavior for answers to both general and specific questions about users

(Ritter & Young, 2001). 

Overall, cognitive architectures provide a very useful tool for contemporary cognitive 

psychology. With the interplay of cognitive science, artificial intelligence and cognitive psychology, 

they can be considered a nearly inseparable part of the field, working on both the theoretical aspect of 

cognitive psychology by helping with the construction of complete models of human cognition, as 

with the practical aspect, modeling holistic performance and events within the system of the intelligent

agent, representing an interesting supplement to task optimization efforts using only expert systems.

Considering the birth of computational cognitive models as a remedy to integrate findings 

from experimental cognitive psychology with, among others, the intention to increase their usability, 
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and the fact that the entire idea of cognitive architectures is to apply vast quantities of empirical data 

from cognitive experiments to artificial intelligent systems with human-like problem-solving methods 

and qualities, one could argue that in a way, cognitive architectures are by nature the subject of applied

cognitive psychology. Their applicative nature makes them very useful for some practical intentions. 

The uses for cognitive architectures vary greatly by domain of application, but considering the range 

of different available architectures and the possibility of always developing new architectures, 

essentially only imagination is the limit, assuming that we’re considering an application which would 

actually benefit from the use of a computational cognitive model (which, I believe, is not always the 

case – a point discussed more in the later section of critique). A few examples of the applications of 

different architectures include designing instruction (e.g. Merriboer, Paas & Sweller, 1998), designing 

and simulating functional behavior in non-human intelligent agents (e.g. the ADAPT-architecture for 

robotics; Benjamin, Lonsdale & Lyon, 2004), and the design and optimization of user interfaces (e.g. 

Ritter & Young, 2001). The applications can also be very specific, such as planning automatized pilots 

with realistic AI for fighter flight simulators (Jones, Laird, Nielsen, Coulter, Kenny & Koss, 1999). 

We will discuss some individual cognitive architectures and their applications in the next 

section. Unfortunately going through all possible interesting architectures is absolutely out of the 

scope of this seminar, but I will nevertheless attempt to gather a list that would be extensive enough to 

cover some of the most prevalent architectures today. At this point, I recommend the reader to note 

how some architectures are more loyal to the notion of modeling »as-human-as-possible« behavior 

than others. All the architectures examined have some theoretical commitment to parallelism, 

specifically in memory retrieval, and also employ one or a few decision modules. Connectionist 

approaches demonstrate weaker performance in the broad functionality cognitive architectures offer at 

best, and although they sometimes serve as significant components in larger architectures, such as in 

CLARION (Sun, Merril & Peterson, 2001), I will not discuss them in detail for the reason.

I will start by discussing three related production systems, Soar, EPIC, and ACT-R/PM. They 

were originally developed to model slightly different aspects of human cognition. However, as they 

develop, there appears to be more convergence than divergence. (Byrne, 2001).
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Soar

Soar (Laird, Newell & Rosenbloom, 1987, as cited in Langley, Laird, Rogers & Sun, 2008) is 

a cognitive architecture that has been developed since the beginning 1980's.  It contains procedural 

long-term knowledge in the form of production rules, organized in terms of operators associated with 

different problem spaces. The operators range from those describing simple, primitive actions with the

intention to modify the agent's internal state or to generate primitive external actions, to others 

describing more abstract activities (Langley et al., 2008). Soar used to represent all long-term memory 

in this manner, but has recently had additions of episodic and semantic memories; the episodic 

memory holding a history of previous states, whereas the semantic memory contains previously 

known facts.

All of Soar's tasks are attempts to pursue a given goal. The knowledge components are used to

dynamically determine the selection and application of basic deliberate acts performed by operators. 

The system moves through one decision at the time, repeatedly suggesting, selecting and applying 

different operations. Soar also contains a learning component to determine which operator to apply 

when an abstract operator cannot be implemented, by creating a new goal to determine which operator

should be implemented and how. The nature of this process leads to the generation of a goal hierarchy, 

where the problems are decomposed into sub problems when necessary, so that the current state of a 

specific goal includes the features of its super ordinate goals and the state of any additional cognitive 

structures bound to pursuing the goal. Information obtained by sensors about the external environment

is available to both sub- and superordinate goals. Then the blockage generating a sub goal is solved, 

that goal disappears, along with its related sub-goals.

Soar includes different learning mechanisms for different types of knowledge: chunking and 

reinforcement learning for procedural knowledge (reinforcement learning adjusts numeric values 

associated with rules that help select operators), and semantic and episodic learning for declarative 

knowledge. Chunking is the learning process, where one or multiple results are produced in a sub goal,

and represented as a new production rule as a summarization of the process leading to the results – a 

process similar to that in ACT-R. Once the system has learned a chunk, it will be applied as a possible 
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action pattern in new situations similar along relevant dimensions to the situation where it was learned,

attempting to avoid the blockage that lead to its formation. 

Soar has been used to develop a variety of sophisticated agents demonstrating impressive 

functionality (Langley et al., 2008), for example, the TAC-Air-Soar, modeling fighter pilots in air 

combat scenarios. Soar has also been used in the realization in numerous intelligent non-player 

characters in interactive computer games (Haunt 2, on the UT game engine; Laird, Magerko, Kerfoot 

& Stokes, 2004). Other applications involve modeling details of language processing (Lewis, 1993, as 

cited in Langley et al., 2008), categorization (Miller & Laird, 1996, as cited in Langley et al. 2008), 

and other aspects of cognition, but overall Soar has been developed towards high-level functionality, 

rather than as-good-as-possible fit to experimental data.

EPIC

EPIC (Meyer & Kieras, 1997) is a production system cognitive processor, which also includes 

perceptual and motor processors. It encodes long-term knowledge as production rules and organizes 

them as methods for accomplishing goals which match elements in a variety of its short-term 

memories, including visual, auditory and tactile buffers. The system selects matched rules and applies 

them in parallel to control eyes, hands, or to alter the memory contents. EPIC focuses strongly on 

achieving quantitative fits to human behavior, and as a multimodal system it has a great emphasis in 

human-like problem solving and performance on tasks involving interaction with complex devices. 

Due to the sensory-motor approach of the system, it is excellent in predicting strategies, performance 

and typical errors in a task employing multiple sensory systems. It is also relatively simple to program,

as the underlying architecture is relatively simple, however as it is primarily an academic research 

system, it has limited support and poor commercial availability (Kieras, 2005). Additionally, it offers 

no coverage of intermediate to longer-term memory phenomena (and as such is not very adequate for 

modeling learning in a multimodal task environment). The perceptual/motor systems offer many 

details and parameters to be specified to fit the task of interest, but this also leads to the modeler 

having to confront more details than she might really like to.
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EPIC-Soar

EPIC-Soar is just what it sounds like, a combination of EPIC and Soar, two complementary 

cognitive architectures, with functions and features of both combined into one. Since I’ve already 

discussed features of both, I will only discuss the special features of their combination. An unusual 

thing about the architecture is that it has no declarative knowledge representation (Kieras, 2005). The 

system is well-established in the AI community and offers good software support and training courses. 

Additionally, it is included in several commercial-grade applications and easily accessible through a 

website. The combination of EPIC and Soar costs some money, whereas Soar itself is available free of 

charge. Unfortunately, the psychological basis of learning and reasoning is not as well developed as in 

some other cognitive architectures, and the program is said to be very difficult to program (Kieras, 

2005).

ACT-R/RP

ACT-R is one of the latest families of cognitive architectures (even though it has been around 

since 1970’s, concerned primarily with modeling human behavior (Langley, Laird, Rogers & Sun, 

2008). It is a hybrid production system architecture, with neural-net like activation mechanisms, its 

infrastructure is related to components from cognitive neuroscience, and the system has a heavy 

emphasis on activation and learning mechanisms (Kieras, 2005). The ACT-R community aims at 

building a system that can perform the full range of human cognitive tasks and describe in detail the 

mechanisms underlying perception, thinking, and action (Dutch, Oentaryo & Pasquier, 2008). ACT-R 

6 includes sensory modules for visual processing, motor modules for action (adopted from EPIC; 

Kieras, 2005), an intentional module for goals and a declarative module for long-term declarative 

knowledge (Langley et al. 2008). Each module has a buffer, which all together comprise ACT-R’s 

short-term memory. It also has a long-term memory of production rules to coordinate processing of the

modules. 

ACT-R functions by determining which productions match against the contents of the short-

term memory and then computing the utility for different productions by calculating the difference 
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between its expected benefit (the goal’s desirability times its probability of success) and its expected 

cost. The system selects the production with the highest utility and executes its action. The situation 

changes, leading to the evaluation of new possible productions and actions.

ACT-R learns on both structural and statistical levels. The base activation for declarative 

chunks increases when they’re associated with selected productions and decays when they’re unused 

for a long time, and the cost and success probability for productions goes through updates as the 

system gains “experience” by observing its own behavior. The architecture is capable of learning 

entirely new rules by analyzing rule firings, replacing constants with variables and combining them 

into new conditions and actions (Taatgen, 2005; as cited in Langley, Laird, Rogers & Sun, 2008).

The ACT-R has been used to model numerous phenomena from experimental psychology, 

such as memory, attention, reasoning, problem solving and language processing, and there are several 

publications reporting accurate fits to quantitative data about human reaction times and error rates 

(Langley, Laird, Rogers & Sun, 2008). Anderson, (2007, as cited in Langley et al, 2008) has related 

ACT-R modules to different brain areas and developed models that match results from brain imaging 

studies. On an applied front, the architecture has played a central role in a widely used school tutoring 

system (Koedinger et al. 1997, as cited in Langley et al., 2008), and it has been used to control mobile 

robots that interact with humans (Trafkon et al., 2005, as cited in Langley et al., 2008). ACT represents

one of the most adequate types of cognitive architectures at this time. It has a very active user 

community consisting primarily of psychologists – it is the best known of current psychology-based 

systems (Kieras, 2005). The team offers training programs, good client support and commitment to 

user-friendly software, however since the ACT is primarily an academic research system, its value for 

large scale applied problems is not clear. Additionally, it lacks perceptual and motor representations.

ICARUS

Icarus is a recently developed architecture (Langley, Cummings & Shapiro, 2004, as cited in 

Langley, Laird, Rogers & Sun, 2008). It stores two distinct forms of knowledge – concepts, which 
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describe classes of situations by comparing them to other previously known concepts and percepts, 

and skills, specifying goal-achievement behaviors and decomposing them to subordinate goals.

ICARUS functions in a somewhat different way from the older cognitive architectures 

presented earlier. The system basically searches for visible objects and deposits their descriptions into 

a perceptual buffer. It then compares the “perceptions” to primitive concepts and adds matched 

instances to its STM as “beliefs”. These activate matching higher-level concepts, allowing the system 

to deductively search for all other implied beliefs. After this, the system finds a path downward 

through its skill hierarchy, where each sub skill has satisfied conditions but an unsatisfied goal.  The 

path terminates in a primitive skill with executable actions, which the system applies to influence the 

environment. This process leads to new percepts through the perceptual buffers, changes in beliefs, 

and the execution of other skill paths to achieve the agent’s goals as a response to the first action. 

When the system fails to find any applicable path through the skill hierarchy in order to achieve its 

top-level goal, it applies a kind of means-ends analysis to solve the problem. This process backs 

begins acting around either a skill that would typically achieve the current goal, or attempts to redefine

the goal so that it resolves the problem a step at the time, executing necessary actions as they become 

applicable. Whenever this problem solving achieves a goal, the system creates a new skill indexed by 

that goal, which it then executes if it finds itself in a similar position.

ICARUS has been specifically useful for tasks requiring a combination of inference, 

execution, problem solving and learning, across multiple domains, ranging from computerized 

solitaire, through simulating drivers in an urban virtual environment, to planning large scale logistics. 

ICARUS is also linked to physical robots carrying out interactive or joint task activities with humans.

Critique and problems in applicability

Although cognitive architectures provide a useful tool for practical applications as well as a 

theoretical base for research, they have some questionable aspects and shortcomings of theoretical, 

philosophical and practical nature. I will dedicate this section to discuss some of my own questions 
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about the nature of cognitive architectures, as well as those raised by researchers who are obviously 

more qualified in the field and, thus, likely bring out more relevant points.

My first argument lies on Newell’s (1973) second injunction on cognitive experimentation, 

where he warned against averaging methods, as it leads to either poorly deviated results or regularity. 

If Newell (1973) considered averaging experimental results a bad idea, then on what results should a 

programmer base their cognitive model? If a cognitive architecture must be based on extensive 

experimental results across the relevant domain, then do the results not need to be averaged some way 

to be useful for building a single architecture? In this way, is a cognitive architecture not an expression

of the average human’s average performance, completely ignoring individual differences, which we 

have reason to believe should distribute normally; and if a cognitive architecture attempts to take into 

account individual differences in predicting performance, then how is that practically taken into 

account? This is obviously not really a problem in using an architecture to create a human-like 

intelligent agent, but does pose a problem when using an architecture-based model in a phenomenon 

greatly influenced by individual differences.

This leads me to another problem; applying the architectures in a practical situation where the 

idea is to model individuals that have been proven to somehow vary from the normative population the

architecture is based on. For example, cognitive architectures have been used to model fighter pilot 

performance (e.g. Jones, Laird, Nielsen, Coulter, Kenny, & Koss, 1999). Since the pilots are selected 

with extensive psychometric and physical testing and then go through extensive training before 

allowed to fly their vehicles, is it realistic to assume that an architecture based on an average 

individual would provide an adequate model of, and perform similar errors, as an actual fighter pilot? 

Additionally, would the pilot's affective state in an actual combat situation bring performance variance 

that would be difficult to capture with an architecture that includes no conative component? Jones et 

al. (1999, as cited in Byrne, 2001) explicitly wished to use the cognitive architecture model in their 

research on fighter pilots in order to »eliminate the need for expert participants«, which in my opinion 

was a mistake, since it is – again, in my opinion – realistic to assume that an expert participant would 

be significantly different from the agent of the architecture. The idea was especially strange, since the 
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research was carried out by the U.S. military, which, I imagine, would have easy access to interview 

expert fighter pilots. 

Another question is whether or not a cognitive architecture provides anything more than their 

programmers and the experts participating in the process can provide without any kind of a 

computational model. Or, in other words, if the computer model is really a necessity if the same 

solution can be acquired with the same development team, using other means – in the most extreme 

case, only pens and papers. If a cognitive architecture is used to supplement information gained from 

an expert system, and the architecture is also specified after an expert in the specific field, does it 

really provide any new information? This is an important question, if time and resources are limited – 

especially if the person interested in the information would have to outsource personnel for the 

cognitive model.

Another issue with the direction computational computer modeling has taken on is that 

Newell’s critique is again becoming more and more topical, but when it was earlier directed at 

experimental cognitive psychology, it could now be directed at computational psychology and 

artificial intelligence. As AI and cognitive science have matured, they have fragmented into several 

well-defined sub-disciplines, with different interests, goals and independent criteria for evaluation 

(Langley, Laird, Rogers & Sun, 2008), despite the fact that commercial and governmental applications

require increasingly integrated intelligent systems, not just improved system components. Newell’s 

critique against setting binary distinction is also relevant to the field, as different schools disagree on 

whether processing should be parallel to model neurons and brain function as a base for every 

application, or if it is arbitrary how the system is constructed, as long as it is a good-enough model of 

its intelligent agent. In a way, computational modeling just changed the platform of Newell’s 

arguments from experimental cognitive psychology to cognitive modeling. 

Human behavior is variable across different domains, with different variables causing different

responses depending on environmental parameters. Responses also vary from individual to another 

due to individual differences. Theoretically it would be necessary to know all parameters and all 
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individual characteristics to build and specify a cognitive model that would model one individual 

person, and so we’d need an infinite amount of models to display performance of each individual 

person with their individual differences, and we would still not have perfect predictive power. In my 

opinion, this displays how the power of cognitive models is in some ways limited to either the creation

of intelligent agents or to modeling behaviors where there is relatively little individual variation. 

Granted, judging by the literature I’ve reviewed for this seminar, they appear to provide solid 

performance when used for this purpose.
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